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MATHEMATICAL MODELING OF NATURAL-GAS
PRODUCTION SYSTEMS

é. A. Bondarev and T. V. Sobolevskaya UDC 533.551:532.546

It is proposed that a gas-bearing bed and a well be considered a single system. [t is demonstrated that the
equation of state of an imperfect gas can be linearly approximated.

In the description of the extraction of natural gas from trap beds through wells, the pipe gas flow and
filtration of gas in a porous medium are usually considered separately, but their interrelationship is absolutely
obvious. The only exception is monograph [1], where an algorithm is developed for determination of parameters
in a model of gas production in terms of measured pressurces and temperatures in the well mouth. In [1] a rather
general mathematical model is used that takes into account the temperature nonuniformity of the gas flow in porous
material and in the well and the imperfection of the gas. A similar problem was considered in [2] for an isothermal
flow of a perfect gas.

At present, the use of a perfect-gas model in calculations of perfect-gas production is recognized as
inadequate because of substantial increases in the depths of occurrence of gas-bearing beds, although the simplicity
of obtained soiutions continues to attract engincers and rescerachers. Therefore, it scems uscful to develop
approaches that can simplify the complicated numerical algorithms for the corresponding boundary-value problems
without deterioration of the accuracy of the results.

In the present article the initial problem [1 ] is simplified using the physics of the process and the possibility
of describing the behavior of natural gas by simple functional relations, which was not noted earlier.

The first simplification of the system of equations used in [1] is that of assuming that gas filtration in the
bed is isothermal. This assumption is physically reasonable, because of the high volume heat capacity of rocks in
comparison with that of the filtering gas and is realized over a wide range of bed parameters, except for gas
extraction from beds with very low permeability, where high pressure gradients decrease the temperature
substantially in the bottom zone. For example, in monograph [1] it is shown that for a permeability of about
0.1-10712 m? neglect of the temperature nonuniformity in the gas-bearing bed results in an error of at least 1%
in the determined mass flow rate. In this case, the relative decrease in the temperature is 0.05 in the bed and 0.95
in the well.

Consequently, the system of equations describing gas extraction takes the form [1]:
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Fig. 1. Gas imperfection cocfficicnt versus dimensionless pressure and
femperature.
The boundary conditions:
M=y =11, (4)
Mo =1Mly0r Oly=0 =9 )

The dimensionless numbers and variables:

M=p/p,, ©=T/T, x=1In(r/r)/x;, y=3/L,
2
x; = In (Ry/r,), By =gL/Rc,, By=8yM RT L/n'Dp,

By=nDalL/c,M, B, = RB/c,, p=uMRT,/ Likhp,,.

In problem (1)-(5) the first equation describes isothermal axisymmetric gas filtration toward the well, and
Egs. (2) and (3) describe nonisothermal gas flow in a vertical tube with allowance for heat transfer with the
surrounding rocks (the first term in Eqg. (3)) and gas cooling due to constriction of the flow (the first term in Eq.
(3)). At the boundary of the bed the pressure is assumed to be known (Eq. (4)), and at the well bottom, the
conjugation condition and the temperature uniformity condition in the bed are given (the first and second conditions
of (8), respectively).

Solution of the system of Egs. (1)-(8§) is begun with integration of Eq. (1) with boundary condition (4). As
a result, the quadrature is obtained

" man ' 6

x,ﬂ(l——x)=[flz(n). (0)

In principle, from (6) it is possible to determine the pressure at the well bottom assuming x = 0. However, it is
impossible to use this result directly as a boundary condition for solution of the system of Egs. (2) and (3).

For subsequent calculations, it is necessary to consider the behavior of the function z(/1) at fixed © = O,

(Fig. 1. First, it should be noted that in the practically important temperature range the function is nonmonotonic,

which substantially hinders use of the most popular formulas for supercompressibility z in a wide pressure range.

For example, the Berthollet equation

z=1+0071/0, (1 ~ 6/ M

can be used only in the range of the dimensionless pressure in which dz/9/7 < 0, i.e., on the left-hand (descending)
branch of the curve z(/T) (see Fig. 1). It is important to note that at constant temperatures formula (7) is a linear
relation of the form z = | + b7, where the coefficient 5 < 0, if 8, < V6.
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TABLE 1. Dimensionless Pressures at Well Bottom and Mouth

nbO‘ ”m
Case
Formula (10) Numerical solution L=2000 L= 3000
1 7.646 7.648 6.420 5.804
2 5.986 6.036 5.201 4.767

From the general form of the curves z(/7) it can be assumed that they are also lincar approximation for
the ascending branches. It should be noted that the pressure should not exceed values at which the sign at the

derivative dz/ 30 changes. It follows from Fig. | that for ©, = 1.8 this limit ts about 370" 10° N/m?. We usc formulas
of the form

2=z (1 + b0, (8)

where the coefficients 4 and zy depend on the dimensionless temperature ©, of the gas-bearing bed.
Substitution of (8) into Eq. (1) with condition (4) gives

L1+ A,
a(l =x)y=70,-1~+In

T 9)
b+ bl

where a = xbzof.

The dimensionless pressure at the bottom 7y, is casily determined by formula (9). The resultant
transcendental equation is solved very easily graphically. For this, it is expressed in the form

u—Ilnu=1+bd —1In(l+bll)~ ab, (10)

where u =1 + b7,

At Ty > 0 the left-hand side of (10) rises monotonically from 1 to infinity. A solution of equation (10) is
found at the intersection point of the curve (4 — In &) with the straight line parallel to the abscissa starting from
a point on the ordinate axis equal to the right-hand side of (10).

The pressure at the bottom calculated in this way is used to determine the temperature and pressure at
the well mouth; thus, initial problem (1)-(5) is reduced to integration of Eqs. (2) and (3) with boundary conditions
(5), in which the mouth pressure is determined by formula (10).

The obtained results will be illustrated by calculation of gas extraction through a vertical well located in
the center of a circular bed. Initial data: Ry = 5200, A = 10, p. = 361.5- 105, T, =343 K, L = 2000 and 3000, D =
2, =0.125, Ty, = 270 K, y = 0.015, « = 5. The gas is methane with the following characteristics: p = 45.8- 105,
Tp=190.5 K, « =0.198-107%, ¢, = 2093.4, R = 530. Two cascs are compared: 1) k=0.12-107"%, M =9.6; 2) & =
0.12-107'% M = 0.6785. All the parameters are given in the Sl system.

First, © = T./ T, = 1.8 is determined. From this isotherm in the curve z = z{/7) (Fig. 1), the coefficients
in formula (8) are determined: z = 0.769 and & = 0.043. Substitution of these values into formula (10) gives Mpq,
and then Egs. (2) and (3) are integrated by the Runge—Kutta method. Results of the calculation are given in Table

I. A numerical solution is obtained by integration of Eq. (1), in which the Latonov—Gurevich formula (3] is used
to determine the coefficient z. At ©, = 1.8, it has the form

11
2=083 +0.1p. ()

It can be seen from Table ! that linear approximation (8) underestimates the results in comparison with
the "exact” solution, but the error does not exceed 1%.

In conclusion, it should be noted that a similar approach can be used in integration of the equation of
nonisothermal pipe flow. For example, at © = B and By = 0 (a horizontal pipeline) the formula
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bzbzox=nbm—n—%m%¥g—l‘;‘i‘. (12)
can be obtained from Eq. (2).
The relation corresponding to By # 0 is not given here as it is too cumbersome.
Solution of one more practically important problem on determination of the bottom pressure in a stopped
well in terms of measured pressures on the surface can also be obtained as a quadrature. For this, 8; =0 is assumed
in Eq. (2) and formula (8) is used. Integration results in

B,

1 il bUT - 1)
n— + - = V.
0’ 709,

Iy

(13)

In the above formula the coordinates origin is on the surface, where the pressure /7 = /Ty is known. In the case of
a perfect gas (b= 0), Eq. (13) becomes the known barometric formula.

NOTATION

p, pressure; T, temperature; r, radial coordinate with the reference point on axis of well; ¥, coordinate
along axis of well; L, well depth; Ry, coordinate of boundary of bed; g, gravily acccleration; R, gas constant; ¢,
u, specific heat at constant pressure and gas viscosity; ¥, hydraulic resistance coefficient; A7, mass flow rate of gas;
a, gas-rock heat transfer coefficient; &, A, permeability and thickness of gas-bearing bed. Subscripts: cr, critical
parameters; r, rock; w, well; in, initial; b, boundary.
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